我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:欢乐棋牌下载手机版 > 击发系统简单 >

大数据主要学什么内容?

归档日期:10-25       文本归类:击发系统简单      文章编辑:爱尚语录

  一般来说,在一线城市,以BAT来说它们企业给应届毕业生的起薪并不高,但只要工作拼命、能力出众,事实上入职后的2、3年里就很容易拿到15万元以上的年薪。而在三线互联网公司,同等条件下,普通技术员工的年薪一般能达到15万元左右。而准二线的互联网公司的普通员工薪水基本也能达到或超过20万元,与许多传统行业相比,这样的收入水平绝对令人艳羡。工作经验超过5年后,互联网企业中的收入差距就会拉大。

  如此诱人的薪资,肯定是人人都想加入的。但加入的条件就在于需要掌握一定的技能,综合很多大数据公司的要求统计如下:

  Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架

  Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网()

  Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战

  Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习

  1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析

  湖南万通汽车学校隶属于新华教育集团,是万通汽车教育旗下旗舰院校之一,学校与中南汽车世界、广汽菲亚特、广汽三菱、上海大众、北汽福田、众泰汽车等多家汽车名企相伴,帮助学生们顺利毕业,名企就业。大数据(big data,mega data)或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。

  3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值

  学电脑,学电竞,学互联网IT技术到新华。长沙新华电脑学院是新华电脑教育旗下的电脑培训学校,新华电脑学校是中国电脑培训知名品牌,计算机培训学校中的佼佼者。要说Java与Python的区别,java是“纯手工”的创造,而Python是利用现有工具的创造,所以python在现实应用层面被广泛推荐。但是如果遇到的问题无法用现有工具解决怎么办?这时就需要用到底层语言进行从无到有的解决问题。(问题是:人生苦短,现有的工具已经可以解决大部分问题了。)目前需要更多的是踩在牛顿上的人。如果你需要创造一个从无到有的事物,想在人工智能某领域开先河。那么整体深入的技术学习是必需的。所以职业里面既存在python开发工程师,也有java,c工程师。它们只会共存,共同进步。

  很多初学者,对大数据分析的概念都是模糊不清的,大数据分析是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,很多人对于大数据分析师的印象就是坐在办公室对着电脑噼里啪啦的敲键盘,跟程序员差不多,这种想法是错误的,其实大数据分析师是一个很高大上的职业,大数据分析师通过获取必要的数据,分析这些数据,然后从数据中发现一些问题提出自己的想法,这就是一个大数据分析师的基本工作内容。

  大数据工程师工作内容取决于你工作在数据流的哪一个环节。从数据上游到数据下游,大致可以分为:

  大数据分析工作内容当然就是使用工具组件(Spark、Flume、Kafka等)或者代码(Java、Scala等)来实现上面几个方面的功能。具体说说如下:

  业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。

  一些字段可能会有异常取值,即脏数据。为了保证数据下游的数据分析统计能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。

  一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。

  一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用*字符替换。

  清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的数据分析统计对实时性要求比较高,则可以把日志记录入到kafka。

  大数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。

  用数据表格、数据图等直观的形式展示上游大数据分析统计的数据。一般公司的某些决策会参考这些图表里头的数据。当然,大数据平台(如CDH、FusionInsight等)搭建与维护,也可能是大数据工程师工作内容的一部分。

  大数据分析师工作的流程简单分为两部分,第一部分就是获取数据,第二部分就是对数据进行处理。那么怎么获得数据呢?首先,我们要知道,获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。因此,基础的SQL语言是必须的。具备基本SQL基础,再学习下其中细节的语法,基本就可以到很多数据了。当每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。

  获得了数据以后,才能够进行数据处理工作。获取数据,把数据处理成自己想要的东西,是一个关键点。很多时候,有了数据不是完成,而是分析的开始。大数据分析师最重要的工作就是把数据根据需求处理好,只有数据跟需求结合起来,才能发挥数据的价值,看到需求的问题和本质所在。如果连数据都没处理好,何谈从数据中发现问题呢?

  就目前而言,大数据分析日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。所以我们要使用专业的大数据分析工具。大数据分析工具都有Excel、SPSS、SAS等工具。Excel、SPSS、SAS 这三者对于大数据分析师来说并不陌生。但是这三种大数据分析工具应对的数据分析的场景并不是相同的,一般来说,SPSS 轻量、易于使用,但功能相对较少,适合常规基本统计分析。而SPSS和SAS作为商业统计软件,提供研究常用的经典统计分析处理。由于SAS 功能丰富而强大,且支持编程扩展其分析能力,适合复杂与高要求的统计性分析。

  以上的内容就是小编为大家讲解的大数据分析师的工作内容了,大数据分析师的工作是比较繁琐的,但是也是比较高大上的。大家在了解大数据分析工作内容的时候可以参考这篇文章,这样可以更好的理解大数据分析行业,最后感谢大家的阅读。

  《大数据分析师工作内容》、《转行大数据分析师后悔了》、《零基础学大数据分析现实吗》、《大数据分析要学什么》、《大数据分析方法》、《浅析大数据分析技术》、《大数据分析流程是什么》、《大数据分析十八般工具》、《大数据分析12大就业方向》、《剖析大数据分析就业前景》、《大数据分析是什么》

本文链接:http://joshsstuff.com/jifaxitongjiandan/643.html